back to top
Σάββατο, 14 Δεκεμβρίου, 2024
ΑρχικήNewsHealthStructure and assembly of the dystrophin glycoprotein complex

Structure and assembly of the dystrophin glycoprotein complex

  • Campbell, K. P. & Kahl, S. D. Association of dystrophin and an integral membrane glycoprotein. Nature 338, 259–262 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ervasti, J. M. & Campbell, K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809–823 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McNally, E. M. & Pytel, P. Muscle diseases: the muscular dystrophies. Annu. Rev. Pathol. 2, 87–109 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, D, S., Goemans, N., Takeda, S., Mercuri, E. & Aartsma-Rus, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Primers 7, 13 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durbeej, M. & Campbell, K. P. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr. Opin. Genet. Dev. 12, 349–361 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, D. G. S., Tinker, A. & Iskratsch, T. The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun. Biol. 5, 1022 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Q. Q. & McNally, E. M. The dystrophin complex: structure, function, and implications for therapy. Compr. Physiol. 5, 1223–1239 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumerson, J. D. & Michele, D. E. The dystrophin-glycoprotein complex in the prevention of muscle damage. J. Biomed. Biotechnol. 2011, 210797 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lapidos, K. A., Kakkar, R. & McNally, E. M. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ. Res. 94, 1023–1031 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belhasan, D. C. & Akaaboune, M. The role of the dystrophin glycoprotein complex on the neuromuscular system. Neurosci. Lett. 722, 134833 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pilgram, G. S. K., Potikanond, S., Baines, R. A., Fradkin, L. G. & Noordermeer, J. N. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol. Neurobiol. 41, 1–21 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Constantin, B. Dystrophin complex functions as a scaffold for signalling proteins. Boichim. Biophys. Acta 1838, 635–642 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin—the protein product of the Duchenne muscular-dystrophy locus. Cell 51, 919–928 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koenig, M., Monaco, A. P. & Kunkel, L. M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–228 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rybakova, I. N., Patel, J. R. & Ervasti, J. M. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J. Cell Biol. 150, 1209–1214 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhat, H. F. et al. ABC of multifaceted dystrophin glycoprotein complex (DGC). J. Cell. Physiol. 233, 5142–5159 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deyst, K. A., Bowe, M. A., Leszyk, J. D. & Fallon, J. R. The α-dystroglycan-β-dystroglycan complex. Membrane organization and relationship to an agrin receptor. J. Biol. Chem. 270, 25956–25959 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holt, K. H., Crosbie, R. H., Venzke, D. P. & Campbell, K. P. Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Lett. 468, 79–83 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, P. T. Dystroglycan glycosylation and its role in matrix binding in skeletal muscle. Glycobiology 13, 55R–66R (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sciandra, F. et al. Identification of the β-dystroglycan binding epitope within the C-terminal region of α-dystroglycan. Eur. J. Biochem. 268, 4590–4597 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crosbie, R. H., Heighway, J., Venzke, D. P., Lee, J. C. & Campbell, K. P. Sarcospan, the 25-kDa transmembrane component of the dystrophin-glycoprotein complex. J. Biol. Chem. 272, 31221–31224 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wein, N., Alfano, L. & Flanigan, K. M. Genetics and emerging treatments for Duchenne and Becker muscular dystrophy. Pediatr. Clin. North. Am. 62, 723–742 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Mah, J. K. et al. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscular Disord 24, 482–491 (2014).

    Article 

    Google Scholar
     

  • Nigro, V. & Savarese, M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol 33, 1–12 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, S. C. et al. Abnormalities in alpha-dystroglycan expression in MDC1C and LGMD2I muscular dystrophies. Am. J. Pathol. 164, 727–737 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michele, D. E. et al. Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418, 417–422 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barresi, R. & Campbell, K. P. Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119, 199–207 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waite, A., Brown, S. C. & Blake, D. J. The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci. 35, 487–496 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsubata, S. et al. Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106, 655–662 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guiraud, S. et al. The pathogenesis and therapy of muscular dystrophies. Annu. Rev. Genomics Hum. Genet. 16, 281–308 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norwood, F. L. M., Sutherland-Smith, A. J., Keep, N. H. & Kendrick-Jones, J. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure 8, 481–491 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muthu, M., Richardson, K. A. & Sutherland-Smith, A. J. The crystal structures of dystrophin and utrophin spectrin repeats: implications for domain boundaries. PLoS ONE 7, e40066 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, X. et al. Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan. Nat. Struct. Biol. 7, 634–638 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bozic, D., Sciandra, F., Lamba, D. & Brancaccio, A. The structure of the N-terminal region of murine skeletal muscle α-dystroglycan discloses a modular architecture. J. Biol. Chem. 279, 44812–44816 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Briggs, D. C. et al. Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nat. Chem. Biol. 12, 810–814 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramaswamy, K. S. et al. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J. Physiol. 589, 1195–1208 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, J. et al. Proteolytic enzymes and altered glycosylation modulate dystroglycan function in carcinoma cells. Cancer Res. 64, 6152–6159 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, D., Yang, B., Meyer, J., Chamberlain, J. S. & Campbell, K. P. Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J. Biol. Chem. 270, 27305–27310 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, Y. M. & Kunkel, L. M. In vitro expressed dystrophin fragments do not associate with each other. FEBS Lett. 410, 153–159 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • SadouletPuccio, H. M., Rajala, M. & Kunkel, L. M. Dystrobrevin and dystrophin: An interaction through coiled-coil motifs. Proc. Natl Acad. Sci. USA 94, 12413–12418 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Swiderski, K. et al. Phosphorylation within the cysteine-rich region of dystrophin enhances its association with β-dystroglycan and identifies a potential novel therapeutic target for skeletal muscle wasting. Hum. Mol. Genet. 23, 6697–6711 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ilsley, J. L., Sudol, M. & Winder, S. J. The interaction of dystrophin with β-dystroglycan is regulated by tyrosine phosphorylation. Cell Signal 13, 625–632 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, X. & Wang, J. W. Structural mechanism of bacteriophage lambda tail’s interaction with the bacterial receptor. Nat. Commun. 15, 4185 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, C. et al. Absence of α7 integrin in dystrophin-deficient mice causes a myopathy similar to Duchenne muscular dystrophy. Hum. Mol. Genet. 15, 989–998 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rooney, J. E. et al. Severe muscular dystrophy in mice that lack dystrophin and α7 integrin. J. Cell Sci. 119, 2185–2195 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodges, B. L. et al. Altered expression of the α7β1 integrin in human and murine muscular dystrophies. J. Cell Sci. 110, 2873–2881 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marshall, J. L. & Crosbie-Watson, R. H. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet. Muscle 3, 1 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Z. et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517, 50–55 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Diniz, G. et al. Sarcolemmal alpha and gamma sarcoglycan protein deficiencies in Turkish siblings with a novel missense mutation in the alpha sarcoglycan gene. Pediatr. Neurol. 50, 640–647 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Duggan, D. J. et al. Mutations in the sarcoglycan genes in patients with myopathy. New Engl. J. Med. 336, 618–624 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piccolo, F. et al. Primary adhalinopathy—a common-cause of autosomal recessive muscular-dystrophy of variable severity. Nat. Genet. 10, 243–245 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carrie, A. et al. Mutational diversity and hot spots in the alpha-sarcoglycan gene in autosomal recessive muscular dystrophy (LGMD2D). J. Med. Genet. 34, 470–475 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saha, M. et al. Impact of PYROXD1 deficiency on cellular respiration and correlations with genetic analyses of limb-girdle muscular dystrophy in Saudi Arabia and Sudan. Physiol. Genomics 50, 929–939 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawai, H. et al. Adhalin gene mutations in patients with autosomal recessive childhood onset muscular dystrophy with adhalin deficiency. J. Clin. Invest. 96, 1202–1207 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duclos, F. et al. β-sarcoglycan: genomic analysis and identification of a novel missense mutation in the LGMD2E Amish isolate. Neuromusc. Disord. 8, 30–38 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • dos Santos, M. R., Jorge, P., Ribeiro, E. M., Pires, M. M. & Guimaraes, A. Noval mutation (Y184C) in exon 4 of the beta-sarcoglycan gene identified in a Portuguese patient. Mutations in brief no. 177. Hum. Mutat. 12, 214–215 (1998).

    PubMed 

    Google Scholar
     

  • Bonnemann, C. G. et al. Genomic screening for beta-sarcoglycan gene mutations: Missense mutations may cause severe limb-girdle muscular dystrophy type 2E (LGMD 2E). Hum. Mol. Genet. 5, 1953–1961 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bönnemann, C. G. et al. LGMD 2E in Tunisia is caused by a homozygous missense mutation in β-sarcoglycan exon 3. Neuromusc. Disord. 8, 193–197 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Vermeer, S. et al. Novel mutations in three patients with LGMD2C with phenotypic differences. Pediatr. Neurol. 30, 291–294 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Nowak, K. J. et al. Severe γ-sarcoglycanopathy caused by a novel missense mutation and a large deletion. Neuromusc. Disord. 10, 100–107 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crosbie, R. H. et al. Molecular and genetic characterization of sarcospan:: insights into sarcoglycan–sarcospan interactions. Hum. Mol. Genet. 9, 2019–2027 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piccolo, F. et al. A founder mutation in the γ-sarcoglycan gene of Gypsies possibly predating their migration out of India. Hum. Mol. Genet. 5, 2019–2022 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duggan, D. J. et al. Mutations in the δ-sarcoglycan gene are a rare cause of autosomal recessive limb-girdle muscular dystrophy (LGMD2). Neurogenetics 1, 49–58 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nigro, V. et al. Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Hum. Mol. Genet. 5, 1179–1186 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreira, E. S. et al. A first missense mutation in the δ sarcoglycan gene associated with a severe phenotype and frequency of limb-girdle muscular dystrophy type 2 F (LGMD2F) in Brazilian sarcoglycanopathies. J. Med. Genet. 35, 951–953 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geis, T. et al. Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 14, 205–213 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Y. et al. Whole exome sequencing identified a novel DAG1 mutation in a patient with rare, mild and late age of onset muscular dystrophy-dystroglycanopathy. J. Cell. Mol. Med. 23, 811–818 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, J., Yan, J., Buzin, C. H., Towbin, J. A. & Sommer, S. S. Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol. Genet. Metab. 77, 119–126 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flanigan, K. M. et al. Rapid direct sequence analysis of the dystrophin gene. Am. J. Hum. Genet. 72, 931–939 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vulin, A. et al. The ZZ domain of dystrophin in DMD: making sense of missense mutations. Hum. Mutat. 35, 257–264 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldberg, L. R. et al. A dystrophin missense mutation showing persistence of dystrophin and dystrophin-associated proteins yet a severe phenotype. Ann. Neurol. 44, 971–976 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenk, U. et al. A cysteine 3340 substitution in the dystroglycan-binding domain of dystrophin associated with Duchenne muscular dystrophy, mental retardation and absence of the ERG b-wave. Hum. Mol. Genet. 5, 973–975 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • VIA: Πηγή Άρθρου


    Greek Live Channels Όλα τα Ελληνικά κανάλια:
    Βρίσκεστε μακριά από το σπίτι ή δεν έχετε πρόσβαση σε τηλεόραση;
    Το IPTV σας επιτρέπει να παρακολουθείτε όλα τα Ελληνικά κανάλια και άλλο περιεχόμενο από οποιαδήποτε συσκευή συνδεδεμένη στο διαδίκτυο.
    Αν θες πρόσβαση σε όλα τα Ελληνικά κανάλια Πατήστε Εδώ


    Ακολουθήστε το TechFreak.gr στο Google News

    Ακολουθήστε το TechFreak.GR στο Google News για να μάθετε πρώτοι όλες τις ειδήσεις τεχνολογίας.


    Dimitris Marizas
    Dimitris Marizashttps://techfreak.gr
    Παθιασμένος με τις νέες τεχνολογίες, με έφεση στην καινοτομία και τη δημιουργικότητα. Διαρκώς αναζητώ τρόπους αξιοποίησης της τεχνολογίας για την επίλυση προβλημάτων και τη βελτίωση της καθημερινής ζωής.
    Διάφορα από την ίδια κατηγορία

    ΑΦΗΣΤΕ ΜΙΑ ΑΠΑΝΤΗΣΗ

    εισάγετε το σχόλιό σας!
    παρακαλώ εισάγετε το όνομά σας εδώ

    Δημοφιλείς Άρθρα

    Τελευταία Νέα