back to top
Πέμπτη, 12 Δεκεμβρίου, 2024
ΑρχικήNewsHealthIron homeostasis reprogramming in ageing and tumorigenesis

Iron homeostasis reprogramming in ageing and tumorigenesis


  • Oh, J., Lee, Y. D. & Wagers, A. J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat. Med. 20, 870–880 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Schultz, M. B. & Sinclair, D. A. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143, 3–14 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rozhok, A. I. & DeGregori, J. The evolution of lifespan and age-dependent cancer risk. Trends Cancer 2, 552–560 (2016).

    Article 

    Google Scholar
     

  • Rozhok, A. & DeGregori, J. A generalized theory of age-dependent carcinogenesis. eLife 8, e39950 (2019).

    Article 

    Google Scholar
     

  • Jackson, E. L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 65, 10280–10288 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Cancer Statistics (National Cancer Institute, 2021); https://www.cancer.gov/about-cancer/understanding/statistics.

  • White, A. C. & Lowry, W. E. Refining the role for adult stem cells as cancer cells of origin. Trends Cell Biol. 25, 11–20 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tomasetti, C. et al. Role of stem-cell divisions in cancer risk. Nature 548, E13–E14 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Boyle, M., Wong, C., Rocha, M. & Jones, D. L. Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1, 470–478 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Pentinmikko, N. et al. Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature 571, 398–402 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Singh, P. P., Demmitt, B. A., Nath, R. D. & Brunet, A. The genetics of aging: a vertebrate perspective. Cell 177, 200–220 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell 62, 728–744 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Michalak, E. M., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 20, 573–589 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Seale, K., Horvath, S., Teschendorff, A., Eynon, N. & Voisin, S. Making sense of the ageing methylome. Nat. Rev. Genet. 23, 585–605 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Balducci, L. & Ershler, W. B. Cancer and ageing: a nexus at several levels. Nat. Rev. Cancer 5, 655–662 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Liu, B. et al. Lung cancer in young adults aged 35 years or younger: a full-scale analysis and review. J. Cancer 10, 3553–3559 (2019).

    Article 

    Google Scholar
     

  • Marjanovic, N. D. et al. Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 38, 229–246.e13 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Basil, M. C. et al. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482–502 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sutherland, K. D. et al. Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma. Proc. Natl Acad. Sci. USA 111, 4952–4957 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Altemeier, W. A., Hung, C. F. & Matute-Bello, G. in Acute Lung Injury and Repair: Scientific Fundamentals and Methods (eds Schnapp, L. M. & Feghali-Bostwick, C.) 5–23 (Springer International Publishing, 2017).

  • Lee, J.-H. et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4–NFATc1–thrombospondin-1 axis. Cell 156, 440–455 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rowbotham, S. P. et al. Age-associated H3K9me2 loss alters the regenerative equilibrium between murine lung alveolar and bronchiolar progenitors. Dev. Cell 58, 2974–2991.e6 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Winslow, M. M. et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 473, 101–104 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Strunz, M. et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. 11, 3559 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, J. et al. NUPR1 is a critical repressor of ferroptosis. Nat. Commun. 12, 647 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, S. & Costa, M. The role of NUPR1 in response to stress and cancer development. Toxicol. Appl. Pharmacol. 454, 116244 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Huang, C., Santofimia-Castano, P. & Iovanna, J. NUPR1: a critical regulator of the antioxidant system. Cancers 13, 3670 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tammela, T. et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545, 355–359 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lan, W. et al. ZZW-115-dependent inhibition of NUPR1 nuclear translocation sensitizes cancer cells to genotoxic agents. JCI Insight 5, e138117 (2020).

    Article 

    Google Scholar
     

  • Little, D. R. et al. Differential chromatin binding of the lung lineage transcription factor NKX2-1 resolves opposing murine alveolar cell fates in vivo. Nat. Commun. 12, 2509 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pappalardi, M. B. et al. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat. Cancer 2, 1002–1017 (2021).

    Article 
    CAS 

    Google Scholar
     

  • The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tabula Muris, C. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article 

    Google Scholar
     

  • Ge, Y. et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduct. Target. Ther. 8, 200 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gomes, A. P. et al. Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature 585, 283–287 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. J. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857.e21 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    Article 

    Google Scholar
     

  • Rodriguez, R., Schreiber, S. L. & Conrad, M. Persister cancer cells: iron addiction and vulnerability to ferroptosis. Mol. Cell 82, 728–740 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Signer, R. A. & Morrison, S. J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12, 152–165 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kobayashi, Y. et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22, 934–946 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Alvarez, S. W. et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551, 639–643 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Muller, S. et al. CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nat. Chem. 12, 929–938 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article 

    Google Scholar
     

  • Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Dow, L. E. et al. Conditional reverse tet-transactivator mouse strains for the efficient induction of TRE-regulated transgenes in mice. PLoS ONE 9, e95236 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Safran, M. et al. Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol. Imaging 2, 297–302 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hsia, C. C., Hyde, D. M., Ochs, M. & Weibel, E. R. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am. J. Respir. Crit. Care Med. 181, 394–418 (2010).

    Article 

    Google Scholar
     

  • LaFave, L. M. et al. Epigenomic state transitions characterize tumor progression in mouse lung adenocarcinoma. Cancer Cell 38, 212–228.e13 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nikitin, A. Y. et al. Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium. Cancer Res. 64, 2307–2316 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Gonzalez, R. F., Allen, L., Gonzales, L., Ballard, P. L. & Dobbs, L. G. HTII-280, a biomarker specific to the apical plasma membrane of human lung alveolar type II cells. J. Histochem. Cytochem. 58, 891–901 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Dost, A. F. M. et al. Organoids model transcriptional hallmarks of oncogenic KRAS activation in lung epithelial progenitor cells. Cell Stem Cell 27, 663–678.e8 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci. Rep. 7, 2193 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sánchez-Rivera, F. J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516, 428–431 (2014).

  • VanDussen, K. L., Sonnek, N. M. & Stappenbeck, T. S. L-WRN conditioned medium for gastrointestinal epithelial stem cell culture shows replicable batch-to-batch activity levels across multiple research teams. Stem Cell Res. 37, 101430 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lun, A. T. L., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).

    Article 

    Google Scholar
     

  • Persad, S. et al. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nat. Biotechnol. 41, 1746–1757 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fang, Z., Liu, X. & Peltz, G. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics https://doi.org/10.1093/bioinformatics/btac757 (2023).

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2012).

    Article 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2014).

    Article 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 

    Google Scholar
     

  • Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Feng, H., Conneely, K. N. & Wu, H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 42, e69 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Park, Y. & Wu, H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32, 1446–1453 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Aran, D., Sirota, M. & Butte, A. J. Systematic pan-cancer analysis of tumour purity. Nat. Commun. 6, 8971 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhuang, X. et al. Pyrosequencing data. Figshare https://figshare.com/s/9e382098b24c29b04fa6 (2024).

  • Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).

    Article 
    CAS 

    Google Scholar
     




  • Greek Live Channels Όλα τα Ελληνικά κανάλια:
    Βρίσκεστε μακριά από το σπίτι ή δεν έχετε πρόσβαση σε τηλεόραση;
    Το IPTV σας επιτρέπει να παρακολουθείτε όλα τα Ελληνικά κανάλια και άλλο περιεχόμενο από οποιαδήποτε συσκευή συνδεδεμένη στο διαδίκτυο.
    Αν θες πρόσβαση σε όλα τα Ελληνικά κανάλια Πατήστε Εδώ


    Ακολουθήστε το TechFreak.gr στο Google News

    Ακολουθήστε το TechFreak.GR στο Google News για να μάθετε πρώτοι όλες τις ειδήσεις τεχνολογίας.


    Dimitris Marizas
    Dimitris Marizashttps://techfreak.gr
    Παθιασμένος με τις νέες τεχνολογίες, με έφεση στην καινοτομία και τη δημιουργικότητα. Διαρκώς αναζητώ τρόπους αξιοποίησης της τεχνολογίας για την επίλυση προβλημάτων και τη βελτίωση της καθημερινής ζωής.
    Διάφορα από την ίδια κατηγορία

    ΑΦΗΣΤΕ ΜΙΑ ΑΠΑΝΤΗΣΗ

    εισάγετε το σχόλιό σας!
    παρακαλώ εισάγετε το όνομά σας εδώ

    Δημοφιλείς Άρθρα

    Τελευταία Νέα