back to top
Πέμπτη, 12 Δεκεμβρίου, 2024
ΑρχικήNewsHealthAvian-inspired legs enable fast ground-to-air transition

Avian-inspired legs enable fast ground-to-air transition


  • Abourachid, A. & Höfling, E. The legs: a key to bird evolutionary success. J. Ornithol. 153, 193–198 (2012).

    Article 

    Google Scholar
     

  • Nie, C., Corcho, X. P. & Spenko, M. Robots on the move: versatility and complexity in mobile robot locomotion. IEEE Robot. Autom. Mag. 20, 72–82 (2013).

    Article 

    Google Scholar
     

  • Kim, K., Spieler, P., Lupu, E.-S., Ramezani, A. & Chung, S.-J. A bipedal walking robot that can fly, slackline, and skateboard. Sci. Robot. 6, eabf8136 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Roderick, W. R., Cutkosky, M. R. & Lentink, D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci. Robot. 6, eabj7562 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zufferey, R. et al. How ornithopters can perch autonomously on a branch. Nat. Commun. 13, 7713 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heppner, F. H. & Anderson, J. G. Leg thrust important in flight take-off in the pigeon. J. Exp. Biol. 114, 285–288 (1985).

    Article 

    Google Scholar
     

  • Bonser, R. & Rayner, J. Measuring leg thrust forces in the common starling. J. Exp. Biol. 199, 435–439 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henry, H. T., Ellerby, D. J. & Marsh, R. L. Performance of guinea fowl Numida meleagris during jumping requires storage and release of elastic energy. J. Exp. Biol. 208, 3293–3302 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Provini, P., Tobalske, B. W., Crandell, K. E. & Abourachid, A. Transition from leg to wing forces during take-off in birds. J. Exp. Biol. 215, 4115–4124 (2012).

    PubMed 

    Google Scholar
     

  • Kardon, G. Muscle and tendon morphogenesis in the avian hind limb. Development 125, 4019–4032 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dickinson, M. H. et al. How animals move: an integrative view. Science 288, 100–106 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Floreano, D. & Wood, R. J. Science, technology and the future of small autonomous drones. Nature 521, 460–466 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roderick, W. R., Chin, D. D., Cutkosky, M. R. & Lentink, D. Birds land reliably on complex surfaces by adapting their foot-surface interactions upon contact. eLife 8, e46415 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • KleinHeerenbrink, M., France, L. A., Brighton, C. H. & Taylor, G. K. Optimization of avian perching manoeuvres. Nature 607, 91–96 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desbiens, A. L., Pope, M. T., Christensen, D. L., Hawkes, E. W. & Cutkosky, M. R. Design principles for efficient, repeated jumpgliding. Bioinspir. Biomim. 9, 025009 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Vidyasagar, A., Zufferey, J.-C., Floreano, D. & Kovač, M. Performance analysis of jump-gliding locomotion for miniature robotics. Bioinspir. Biomim. 10, 025006 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Badri-Spröwitz, A., Aghamaleki Sarvestani, A., Sitti, M. & Daley, M. A. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching. Sci. Robot. 7, eabg4055 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Design and control of a miniature bipedal robot with proprioceptive actuation for dynamic behaviors. In 2022 International Conference on Robotics and Automation 8547–8553 (IEEE, 2022).

  • Woodward, M. A. & Sitti, M. MultiMo-Bat: a biologically inspired integrated jumping–gliding robot. Int. J. Robot. Res. 33, 1511–1529 (2014).

    Article 

    Google Scholar
     

  • Haldane, D. W., Plecnik, M. M., Yim, J. K. & Fearing, R. S. Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 1, eaag2048 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Shin, W. D., Stewart, W., Estrada, M. A., Ijspeert, A. J. & Floreano, D. Elastic-actuation mechanism for repetitive hopping based on power modulation and cyclic trajectory generation. IEEE Trans. Robot. 39, 558–571 (2022).

    Article 

    Google Scholar
     

  • Hawkes, E. W. et al. Engineered jumpers overcome biological limits via work multiplication. Nature 604, 657–661 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Provini, P. & Höfling, E. To hop or not to hop? The answer is in the bird trees. Syst. Biol. 69, 962–972 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Dagc, A. I. The walk of the silver gull (Larus novaehollandiae) and of other birds. J. Zool. 182, 529–540 (1977).

    Article 

    Google Scholar
     

  • Lees, J., Gardiner, J., Usherwood, J. & Nudds, R. Locomotor preferences in terrestrial vertebrates: an online crowdsourcing approach to data collection. Sci. Rep. 6, 28825 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verstappen, M., Aerts, P. & De Vree, F. Functional morphology of the hindlimb musculature of the black-billed magpie, Pica pica (Aves, Corvidae). Zoomorphology 118, 207–223 (1998).

    Article 

    Google Scholar
     

  • Pieper, D. L. The Kinematics of Manipulators under Computer Control (Stanford Univ., 1969).

  • Kilbourne, B. M. On birds: scale effects in the neognath hindlimb and differences in the gross morphology of wings and hindlimbs: scale effects in neognath hindlimbs. Biol. J. Linn. Soc. 110, 14–31 (2013).

    Article 

    Google Scholar
     

  • Hutchinson, J. R. The evolution of hindlimb tendons and muscles on the line to crown-group birds. Comp. Biochem. Physiol. A 133, 1051–1086 (2002).

    Article 

    Google Scholar
     

  • Backus, S. B., Sustaita, D., Odhner, L. U. & Dollar, A. M. Mechanical analysis of avian feet: multiarticular muscles in grasping and perching. R. Soc. Open Sci. 2, 140350 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Askew, G. N., Marsh, R. L. & Ellington, C. P. The mechanical power output of the flight muscles of blue-breasted quail (Coturnix chinensis) during take-off. J. Exp. Biol. 204, 3601–3619 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachmann, R. J., Boria, F. J., Vaidyanathan, R., Ifju, P. G. & Quinn, R. D. A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion. Mech. Mach. Theory 44, 513–526 (2009).

    Article 

    Google Scholar
     

  • Daler, L., Mintchev, S., Stefanini, C. & Floreano, D. A bioinspired multi-modal flying and walking robot. Bioinspir. Biomim. 10, 016005 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Karydis, K. & Kumar, V. Energetics in robotic flight at small scales. Interface Focus 7, 20160088 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, R. R. et al. Gait-specific energetics contributes to economical walking and running in emus and ostriches. Proc. R. Soc. B 278, 2040–2046 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Rubenson, J. et al. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses. J. Exp. Biol. 210, 3513–3524 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Tobalske, B. W. & Dial, K. P. Effects of body size on take-off flight performance in the Phasianidae (Aves). J. Exp. Biol. 203, 3319–3332 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heers, A. M. & Dial, K. P. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies. Evolution 69, 305–320 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Dial, K. P. Evolution of avian locomotion: correlates of flight style, locomotor modules, nesting biology, body size, development, and the origin of flapping flight. Auk 120, 941–952 (2003).

    Article 

    Google Scholar
     

  • Sato, K. et al. Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs. PLoS ONE 4, e5400 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bishop, P. J. et al. The influence of speed and size on avian terrestrial locomotor biomechanics: predicting locomotion in extinct theropod dinosaurs. PLoS ONE 13, e0192172 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tucker, V. A. The energetic cost of moving about: walking and running are extremely inefficient forms of locomotion. Much greater efficiency is achieved by birds, fish—and bicyclists. Am. Sci. 63, 413–419 (1975).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kilbourne, B. M. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds. Front. Zool. 11, 37 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truong, N. T., Phan, H. V. & Park, H. C. Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot. Bioinspir. Biomim. 14, 036010 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Preininger, D., Schoas, B., Kramer, D. & Boeckle, M. Waste disposal sites as all-you-can eat buffets for carrion crows (Corvus corone). Animals 9, 215 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, Y. & Park, H.-W. Design and experimental implementation of a quasi-direct-drive leg for optimized jumping. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems 300–305 (IEEE, 2017).

  • Käslin, R., Kolvenbach, H., Paez, L., Lika, K. & Hutter, M. Towards a passive adaptive planar foot with ground orientation and contact force sensing for legged robots. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems 2707–2714 (IEEE, 2018).

  • Askari, M., Shin, W. D., Lenherr, D., Stewart, W. & Floreano, D. Avian-inspired claws enable robot perching or walking. IEEE/ASME Trans. Mechatron. 29, 1856–1866 (2023).

  • McGhee, R. B. & Frank, A. A. On the stability properties of quadruped creeping gaits. Math. Biosci. 3, 331–351 (1968).

    Article 

    Google Scholar
     

  • Kaneko, K. et al. Design of prototype humanoid robotics platform for HRP. In IEEE/RSJ International Conference on Intelligent Robots and Systems Vol. 3, 2431–2436 (IEEE, 2002).

  • Park, I.-W., Kim, J.-Y., Lee, J. & Oh, J.-H. Mechanical design of the humanoid robot platform, HUBO. Adv. Robot. 21, 1305–1322 (2007).

    Article 

    Google Scholar
     

  • Macaulay, S. et al. Decoupling body shape and mass distribution in birds and their dinosaurian ancestors. Nat. Commun. 14, 1575 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, A. L. & Taylor, G. K. Animal flight dynamics I. Stability in gliding flight. J. Theor. Biol. 212, 399–424 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutter, M. StarlETH & Co.: Design and Control of Legged Robots with Compliant Actuation (ETH Zurich, 2013).

  • Slotine, S. B. & Siciliano, B. A general framework for managing multiple tasks in highly redundant robotic systems. In Proc. International Conference on Advanced Robotics Vol. 2, 1211–1216 (IEEE, 1991).

  • Wampler, C. W. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16, 93–101 (1986).

    Article 

    Google Scholar
     

  • Righetti, L., Buchli, J., Mistry, M. & Schaal, S. Inverse dynamics control of floating-base robots with external constraints: a unified view. In 2011 IEEE International Conference on Robotics and Automation 1085–1090 (IEEE, 2011).

  • Smith, N., Wilson, A., Jespers, K. J. & Payne, R. Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus). J. Anat. 209, 765–779 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey, C., Baliga, V., Wong, J., Altshuler, D. & Inman, D. Birds can transition between stable and unstable states via wing morphing. Nature 603, 648–653 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrey, J. M., Lambrecht, B., Horchler, A. D., Ritzmann, R. E. & Quinn, R. D. Highly mobile and robust small quadruped robots. In Proc. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems Vol. 1, 82–87 (IEEE, 2003).

  • Neville, N. & Buehler, M. Towards bipedal running of a six legged robot. In 12th Yale Workshop on Adaptive and Learning Systems Vol. 12, 1–7 (Yale University, 2003).

  • Collins, S. Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S., Clark, J. E. & Cutkosky, M. R. iSprawl: design and tuning for high-speed autonomous open-loop running. Int. J. Robot. Res. 25, 903–912 (2006).

    Article 

    Google Scholar
     

  • Birkmeyer, P., Peterson, K. & Fearing, R. S. DASH: a dynamic 16 g hexapedal robot. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems 2683–2689 (IEEE, 2009).

  • Spröwitz, A. et al. Towards dynamic trot gait locomotion: design, control, and experiments with Cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 32, 932–950 (2013).

    Article 

    Google Scholar
     

  • Hutter, M. et al. ANYmal—a highly mobile and dynamic quadrupedal robot. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems 38–44 (IEEE, 2016).

  • Bledt, G. et al. MIT Cheetah 3: design and control of a robust, dynamic quadruped robot. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems 2245–2252 (IEEE, 2018).

  • Shin, W. D., Park, J. & Park, H.-W. Development and experiments of a bio-inspired robot with multi-mode in aerial and terrestrial locomotion. Bioinspir. Biomim. 14, 056009 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yadukumar, S. N., Pasupuleti, M. & Ames, A. D. From formal methods to algorithmic implementation of human inspired control on bipedal robots. In Algorithmic Foundations of Robotics X: Proc. Tenth Workshop on the Algorithmic Foundations of Robotics 511–526 (Springer, 2013).

  • Reher, J., Cousineau, E. A., Hereid, A., Hubicki, C. M. & Ames, A. D. Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS. In 2016 IEEE International Conference on Robotics and Automation 1794–1801 (IEEE, 2016).

  • Shin, W. D. Data for ‘Fast ground-to-air transition enabled by avian-inspired multifunctional legs’. Zenodo https://doi.org/10.5281/zenodo.13326012 (2024).

  • Shin, W. D. MATLAB code for jumping takeoff simulation. Zenodo https://doi.org/10.5281/zenodo.13326431 (2024).




  • Greek Live Channels Όλα τα Ελληνικά κανάλια:
    Βρίσκεστε μακριά από το σπίτι ή δεν έχετε πρόσβαση σε τηλεόραση;
    Το IPTV σας επιτρέπει να παρακολουθείτε όλα τα Ελληνικά κανάλια και άλλο περιεχόμενο από οποιαδήποτε συσκευή συνδεδεμένη στο διαδίκτυο.
    Αν θες πρόσβαση σε όλα τα Ελληνικά κανάλια Πατήστε Εδώ


    Ακολουθήστε το TechFreak.gr στο Google News

    Ακολουθήστε το TechFreak.GR στο Google News για να μάθετε πρώτοι όλες τις ειδήσεις τεχνολογίας.


    Dimitris Marizas
    Dimitris Marizashttps://techfreak.gr
    Παθιασμένος με τις νέες τεχνολογίες, με έφεση στην καινοτομία και τη δημιουργικότητα. Διαρκώς αναζητώ τρόπους αξιοποίησης της τεχνολογίας για την επίλυση προβλημάτων και τη βελτίωση της καθημερινής ζωής.
    Διάφορα από την ίδια κατηγορία

    ΑΦΗΣΤΕ ΜΙΑ ΑΠΑΝΤΗΣΗ

    εισάγετε το σχόλιό σας!
    παρακαλώ εισάγετε το όνομά σας εδώ

    Δημοφιλείς Άρθρα

    Τελευταία Νέα