Abourachid, A. & Höfling, E. The legs: a key to bird evolutionary success. J. Ornithol. 153, 193–198 (2012).
Nie, C., Corcho, X. P. & Spenko, M. Robots on the move: versatility and complexity in mobile robot locomotion. IEEE Robot. Autom. Mag. 20, 72–82 (2013).
Kim, K., Spieler, P., Lupu, E.-S., Ramezani, A. & Chung, S.-J. A bipedal walking robot that can fly, slackline, and skateboard. Sci. Robot. 6, eabf8136 (2021).
Roderick, W. R., Cutkosky, M. R. & Lentink, D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci. Robot. 6, eabj7562 (2021).
Zufferey, R. et al. How ornithopters can perch autonomously on a branch. Nat. Commun. 13, 7713 (2022).
Heppner, F. H. & Anderson, J. G. Leg thrust important in flight take-off in the pigeon. J. Exp. Biol. 114, 285–288 (1985).
Bonser, R. & Rayner, J. Measuring leg thrust forces in the common starling. J. Exp. Biol. 199, 435–439 (1996).
Henry, H. T., Ellerby, D. J. & Marsh, R. L. Performance of guinea fowl Numida meleagris during jumping requires storage and release of elastic energy. J. Exp. Biol. 208, 3293–3302 (2005).
Provini, P., Tobalske, B. W., Crandell, K. E. & Abourachid, A. Transition from leg to wing forces during take-off in birds. J. Exp. Biol. 215, 4115–4124 (2012).
Kardon, G. Muscle and tendon morphogenesis in the avian hind limb. Development 125, 4019–4032 (1998).
Dickinson, M. H. et al. How animals move: an integrative view. Science 288, 100–106 (2000).
Floreano, D. & Wood, R. J. Science, technology and the future of small autonomous drones. Nature 521, 460–466 (2015).
Roderick, W. R., Chin, D. D., Cutkosky, M. R. & Lentink, D. Birds land reliably on complex surfaces by adapting their foot-surface interactions upon contact. eLife 8, e46415 (2019).
KleinHeerenbrink, M., France, L. A., Brighton, C. H. & Taylor, G. K. Optimization of avian perching manoeuvres. Nature 607, 91–96 (2022).
Desbiens, A. L., Pope, M. T., Christensen, D. L., Hawkes, E. W. & Cutkosky, M. R. Design principles for efficient, repeated jumpgliding. Bioinspir. Biomim. 9, 025009 (2014).
Vidyasagar, A., Zufferey, J.-C., Floreano, D. & Kovač, M. Performance analysis of jump-gliding locomotion for miniature robotics. Bioinspir. Biomim. 10, 025006 (2015).
Badri-Spröwitz, A., Aghamaleki Sarvestani, A., Sitti, M. & Daley, M. A. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching. Sci. Robot. 7, eabg4055 (2022).
Liu, Y. et al. Design and control of a miniature bipedal robot with proprioceptive actuation for dynamic behaviors. In 2022 International Conference on Robotics and Automation 8547–8553 (IEEE, 2022).
Woodward, M. A. & Sitti, M. MultiMo-Bat: a biologically inspired integrated jumping–gliding robot. Int. J. Robot. Res. 33, 1511–1529 (2014).
Haldane, D. W., Plecnik, M. M., Yim, J. K. & Fearing, R. S. Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 1, eaag2048 (2016).
Shin, W. D., Stewart, W., Estrada, M. A., Ijspeert, A. J. & Floreano, D. Elastic-actuation mechanism for repetitive hopping based on power modulation and cyclic trajectory generation. IEEE Trans. Robot. 39, 558–571 (2022).
Hawkes, E. W. et al. Engineered jumpers overcome biological limits via work multiplication. Nature 604, 657–661 (2022).
Provini, P. & Höfling, E. To hop or not to hop? The answer is in the bird trees. Syst. Biol. 69, 962–972 (2020).
Dagc, A. I. The walk of the silver gull (Larus novaehollandiae) and of other birds. J. Zool. 182, 529–540 (1977).
Lees, J., Gardiner, J., Usherwood, J. & Nudds, R. Locomotor preferences in terrestrial vertebrates: an online crowdsourcing approach to data collection. Sci. Rep. 6, 28825 (2016).
Verstappen, M., Aerts, P. & De Vree, F. Functional morphology of the hindlimb musculature of the black-billed magpie, Pica pica (Aves, Corvidae). Zoomorphology 118, 207–223 (1998).
Pieper, D. L. The Kinematics of Manipulators under Computer Control (Stanford Univ., 1969).
Kilbourne, B. M. On birds: scale effects in the neognath hindlimb and differences in the gross morphology of wings and hindlimbs: scale effects in neognath hindlimbs. Biol. J. Linn. Soc. 110, 14–31 (2013).
Hutchinson, J. R. The evolution of hindlimb tendons and muscles on the line to crown-group birds. Comp. Biochem. Physiol. A 133, 1051–1086 (2002).
Backus, S. B., Sustaita, D., Odhner, L. U. & Dollar, A. M. Mechanical analysis of avian feet: multiarticular muscles in grasping and perching. R. Soc. Open Sci. 2, 140350 (2015).
Askew, G. N., Marsh, R. L. & Ellington, C. P. The mechanical power output of the flight muscles of blue-breasted quail (Coturnix chinensis) during take-off. J. Exp. Biol. 204, 3601–3619 (2001).
Bachmann, R. J., Boria, F. J., Vaidyanathan, R., Ifju, P. G. & Quinn, R. D. A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion. Mech. Mach. Theory 44, 513–526 (2009).
Daler, L., Mintchev, S., Stefanini, C. & Floreano, D. A bioinspired multi-modal flying and walking robot. Bioinspir. Biomim. 10, 016005 (2015).
Karydis, K. & Kumar, V. Energetics in robotic flight at small scales. Interface Focus 7, 20160088 (2017).
Watson, R. R. et al. Gait-specific energetics contributes to economical walking and running in emus and ostriches. Proc. R. Soc. B 278, 2040–2046 (2011).
Rubenson, J. et al. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses. J. Exp. Biol. 210, 3513–3524 (2007).
Tobalske, B. W. & Dial, K. P. Effects of body size on take-off flight performance in the Phasianidae (Aves). J. Exp. Biol. 203, 3319–3332 (2000).
Heers, A. M. & Dial, K. P. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies. Evolution 69, 305–320 (2015).
Dial, K. P. Evolution of avian locomotion: correlates of flight style, locomotor modules, nesting biology, body size, development, and the origin of flapping flight. Auk 120, 941–952 (2003).
Sato, K. et al. Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs. PLoS ONE 4, e5400 (2009).
Bishop, P. J. et al. The influence of speed and size on avian terrestrial locomotor biomechanics: predicting locomotion in extinct theropod dinosaurs. PLoS ONE 13, e0192172 (2018).
Tucker, V. A. The energetic cost of moving about: walking and running are extremely inefficient forms of locomotion. Much greater efficiency is achieved by birds, fish—and bicyclists. Am. Sci. 63, 413–419 (1975).
Kilbourne, B. M. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds. Front. Zool. 11, 37 (2014).
Truong, N. T., Phan, H. V. & Park, H. C. Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot. Bioinspir. Biomim. 14, 036010 (2019).
Preininger, D., Schoas, B., Kramer, D. & Boeckle, M. Waste disposal sites as all-you-can eat buffets for carrion crows (Corvus corone). Animals 9, 215 (2019).
Ding, Y. & Park, H.-W. Design and experimental implementation of a quasi-direct-drive leg for optimized jumping. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems 300–305 (IEEE, 2017).
Käslin, R., Kolvenbach, H., Paez, L., Lika, K. & Hutter, M. Towards a passive adaptive planar foot with ground orientation and contact force sensing for legged robots. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems 2707–2714 (IEEE, 2018).
Askari, M., Shin, W. D., Lenherr, D., Stewart, W. & Floreano, D. Avian-inspired claws enable robot perching or walking. IEEE/ASME Trans. Mechatron. 29, 1856–1866 (2023).
McGhee, R. B. & Frank, A. A. On the stability properties of quadruped creeping gaits. Math. Biosci. 3, 331–351 (1968).
Kaneko, K. et al. Design of prototype humanoid robotics platform for HRP. In IEEE/RSJ International Conference on Intelligent Robots and Systems Vol. 3, 2431–2436 (IEEE, 2002).
Park, I.-W., Kim, J.-Y., Lee, J. & Oh, J.-H. Mechanical design of the humanoid robot platform, HUBO. Adv. Robot. 21, 1305–1322 (2007).
Macaulay, S. et al. Decoupling body shape and mass distribution in birds and their dinosaurian ancestors. Nat. Commun. 14, 1575 (2023).
Thomas, A. L. & Taylor, G. K. Animal flight dynamics I. Stability in gliding flight. J. Theor. Biol. 212, 399–424 (2001).
Hutter, M. StarlETH & Co.: Design and Control of Legged Robots with Compliant Actuation (ETH Zurich, 2013).
Slotine, S. B. & Siciliano, B. A general framework for managing multiple tasks in highly redundant robotic systems. In Proc. International Conference on Advanced Robotics Vol. 2, 1211–1216 (IEEE, 1991).
Wampler, C. W. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16, 93–101 (1986).
Righetti, L., Buchli, J., Mistry, M. & Schaal, S. Inverse dynamics control of floating-base robots with external constraints: a unified view. In 2011 IEEE International Conference on Robotics and Automation 1085–1090 (IEEE, 2011).
Smith, N., Wilson, A., Jespers, K. J. & Payne, R. Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus). J. Anat. 209, 765–779 (2006).
Harvey, C., Baliga, V., Wong, J., Altshuler, D. & Inman, D. Birds can transition between stable and unstable states via wing morphing. Nature 603, 648–653 (2022).
Morrey, J. M., Lambrecht, B., Horchler, A. D., Ritzmann, R. E. & Quinn, R. D. Highly mobile and robust small quadruped robots. In Proc. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems Vol. 1, 82–87 (IEEE, 2003).
Neville, N. & Buehler, M. Towards bipedal running of a six legged robot. In 12th Yale Workshop on Adaptive and Learning Systems Vol. 12, 1–7 (Yale University, 2003).
Collins, S. Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005).
Kim, S., Clark, J. E. & Cutkosky, M. R. iSprawl: design and tuning for high-speed autonomous open-loop running. Int. J. Robot. Res. 25, 903–912 (2006).
Birkmeyer, P., Peterson, K. & Fearing, R. S. DASH: a dynamic 16 g hexapedal robot. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems 2683–2689 (IEEE, 2009).
Spröwitz, A. et al. Towards dynamic trot gait locomotion: design, control, and experiments with Cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 32, 932–950 (2013).
Hutter, M. et al. ANYmal—a highly mobile and dynamic quadrupedal robot. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems 38–44 (IEEE, 2016).
Bledt, G. et al. MIT Cheetah 3: design and control of a robust, dynamic quadruped robot. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems 2245–2252 (IEEE, 2018).
Shin, W. D., Park, J. & Park, H.-W. Development and experiments of a bio-inspired robot with multi-mode in aerial and terrestrial locomotion. Bioinspir. Biomim. 14, 056009 (2019).
Yadukumar, S. N., Pasupuleti, M. & Ames, A. D. From formal methods to algorithmic implementation of human inspired control on bipedal robots. In Algorithmic Foundations of Robotics X: Proc. Tenth Workshop on the Algorithmic Foundations of Robotics 511–526 (Springer, 2013).
Reher, J., Cousineau, E. A., Hereid, A., Hubicki, C. M. & Ames, A. D. Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS. In 2016 IEEE International Conference on Robotics and Automation 1794–1801 (IEEE, 2016).
Shin, W. D. Data for ‘Fast ground-to-air transition enabled by avian-inspired multifunctional legs’. Zenodo https://doi.org/10.5281/zenodo.13326012 (2024).
Shin, W. D. MATLAB code for jumping takeoff simulation. Zenodo https://doi.org/10.5281/zenodo.13326431 (2024).
Greek Live Channels Όλα τα Ελληνικά κανάλια:
Βρίσκεστε μακριά από το σπίτι ή δεν έχετε πρόσβαση σε τηλεόραση;
Το IPTV σας επιτρέπει να παρακολουθείτε όλα τα Ελληνικά κανάλια και άλλο περιεχόμενο από οποιαδήποτε συσκευή συνδεδεμένη στο διαδίκτυο.
Αν θες πρόσβαση σε όλα τα Ελληνικά κανάλια
Πατήστε Εδώ
Ακολουθήστε το TechFreak.GR στο Google News για να μάθετε πρώτοι όλες τις ειδήσεις τεχνολογίας.