back to top
Τετάρτη, 11 Δεκεμβρίου, 2024
ΑρχικήNewsHealthApplied Wearable Devices for Body Fluid Analysis

Applied Wearable Devices for Body Fluid Analysis


  • Rizas, K. D. et al. Smartphone-based screening for atrial fibrillation: a pragmatic randomized clinical trial. Nat. Med. 28, 1823–1830 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brasier, N. et al. Detection of atrial fibrillation with a smartphone camera: first prospective, international, two-centre, clinical validation study (DETECT AF PRO). Europace 21, 41–47 (2019).

    PubMed 

    Google Scholar
     

  • Kim, J., Campbell, A. S., de Ávila, B. E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019). This paper has been one of the most successful papers providing a differentiated outlook on the use of wearable devices including their clinical application.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ates, H. C. & Dincer, C. Wearable breath analysis. Nat. Rev. Bioeng. 1, 80–82 (2023).


    Google Scholar
     

  • Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022). This paper provides a differentiated overview on the modularity of wearable sensors and their potential to serve various and heterogeneous needs.

  • Tu, J. et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01059-5 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Concannon, T. W. et al. Practical guidance for involving stakeholders in health research. J. Gen. Intern. Med. 34, 458–463 (2019).

    PubMed 

    Google Scholar
     

  • Min, J. et al. Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).


    Google Scholar
     

  • Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). This paper demonstrated the concept of and the basic work for sweat analysis by wearable devices. It has become a highly cited and important work for the whole field.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghaffari, R., Aranyosi, A. J., Lee, S. P., Model, J. B. & Baker, L. B. The Gx Sweat Patch for personalized hydration management. Nat. Rev. Bioeng. 1, 5–7 (2023). This paper discusses the successful translation and commercialization of a body-fluid analysing device. It is a great example of interdisciplinary collaboration between engineers, physiologists and a business partner such as Gatorade.


    Google Scholar
     

  • Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00916-z (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ray Tyler, R. et al. Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Sci. Transl. Med. 13, eabd8109 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, C. et al. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01513-0 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedel, M. et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00998-9 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00887-1 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ates, H. C. et al. Biosensor-enabled multiplexed on-site therapeutic drug monitoring of antibiotics. Adv. Mater. 34, 2104555 (2022).

    PubMed 

    Google Scholar
     

  • Maier, D. et al. Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens. 4, 2945–2951 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jeerapan, I., Sangsudcha, W. & Phokhonwong, P. Wearable energy devices on mask-based printed electrodes for self-powered glucose biosensors. Sens. Biosensing Res. 38, 100525 (2022).


    Google Scholar
     

  • Heng, W. et al. A smart mask for exhaled breath condensate harvesting and analysis. Science 385, 954–961 (2024). This study succesfully demonstrated the application of a wearable facemask that analyses patients’ EBC.

    CAS 
    PubMed 

    Google Scholar
     

  • Ge, Z. et al. Wireless and closed-loop smart dressing for exudate management and on-demand treatment of chronic wounds. Adv. Mater. 35, 2304005 (2023).

    CAS 

    Google Scholar
     

  • Bai, Z. et al. Smart battery-free and wireless bioelectronic platform based on a nature-skin-derived organohydrogel for chronic wound diagnosis, assessment, and accelerated healing. Nano Energy 118, 108989 (2023).

    CAS 

    Google Scholar
     

  • Gao, Y. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614 (2021).

  • Pei, X. et al. A bifunctional fully integrated wearable tracker for epidermal sweat and wound exudate multiple biomarkers monitoring. Small 18, 2205061 (2022).

    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv. Funct. Mater. 30, 1905493 (2020).

    CAS 

    Google Scholar
     

  • Zheng, X. T. et al. Battery-free and AI-enabled multiplexed sensor patches for wound monitoring. Sci. Adv. 9, eadg6670 (2023).

  • Pang, Q. et al. Smart wound dressing for advanced wound management: real-time monitoring and on-demand treatment. Mater. Des. 229, 111917 (2023).

    CAS 

    Google Scholar
     

  • Ates, H. C. et al. Integrated devices for non-invasive diagnostics. Adv. Funct. Mater. 31, 2010388 (2021).

    CAS 

    Google Scholar
     

  • Sempionatto, J. R. et al. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 17, 1834–1842 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kownacka, A. E. et al. Clinical evidence for use of a noninvasive biosensor for tear glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating. Biomacromolecules 19, 4504–4511 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Carmona, L. et al. Pacifier biosensor: toward noninvasive saliva biomarker monitoring. Anal. Chem. 91, 13883–13891 (2019).

    PubMed 

    Google Scholar
     

  • Kim, J. et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, H.-R. et al. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosens. Bioelectron. 210, 114329 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Arakawa, T. et al. A wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement. Anal. Chem. 92, 12201–12207 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bellagambi, F. G. et al. Saliva sampling: methods and devices. An overview. Trends Anal. Chem. 124, 115781 (2020).

    CAS 

    Google Scholar
     

  • Zhang, J. et al. A wearable self-powered biosensor system integrated with diaper for detecting the urine glucose of diabetic patients. Sens. Actuators B 341, 130046 (2021).

    CAS 

    Google Scholar
     

  • Shitanda, I. et al. Self-powered diaper sensor with wireless transmitter powered by paper-based biofuel cell with urine glucose as fuel. ACS Sens. 6, 3409–3415 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, J. H. et al. A smart diaper system using Bluetooth and smartphones to automatically detect urination and volume of voiding: prospective observational pilot study in an acute care hospital. J. Med. Internet Res. 23, e29979 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Smart diaper based on integrated multiplex carbon nanotube-coated electrode array sensors for in situ urine monitoring. ACS Appl. Nano Mater. 5, 4767–4778 (2022).

    CAS 

    Google Scholar
     

  • CIOMS Working Group XI. Patient involvement in the development, regulation and safe use of medicines (CIOMS, 2022).

  • Majmudar, M. D., Harrington, R. A., Brown, N. J., Graham, G. & McConnell, M. V. Clinician innovator: a novel career path in academic medicine. J. Am. Heart Assoc. 4, e001990 (2015).

  • FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource (Food and Drug Administration, National Institutes of Health, 2016).

  • Goldhahn, J., Brasier, N. & Kehoe, L. Digitalizing health trials by the Clinical Trials Transformation Initiative. Nat. Rev. Bioeng. https://doi.org/10.1038/s44222-024-00212-2 (2024).

    Article 

    Google Scholar
     

  • Brasier, N. et al. Next-generation digital biomarkers: continuous molecular health monitoring using wearable devices. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2023.12.001 (2024).

  • Durán, C. O. et al. Implementation of digital health technology in clinical trials: the 6R framework. Nat. Med. https://doi.org/10.1038/s41591-023-02489-z (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Walter, J. R., Xu, S. & Rogers, J. A. From lab to life: how wearable devices can improve health equity. Nat. Commun. 15, 123 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jagannath, B. et al. Temporal profiling of cytokines in passively expressed sweat for detection of infection using wearable device. Bioeng. Transl. Med. 6, e10220 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mian, Z., Hermayer, K. L. & Jenkins, A. Continuous glucose monitoring: review of an innovation in diabetes management. Am. J. Med. Sci. 358, 332–339 (2019).

    PubMed 

    Google Scholar
     

  • Beck, R. W. et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA 317, 371–378 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Brasier, N. et al. The potential of wearable sweat sensors in heart failure management. Nat. Electron. 7, 182–184 (2024).

  • Slavich, M. et al. Hyperhidrosis: the neglected sign in heart failure patients. Am. J. Cardiovasc. Dis. 11, 635–641 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Brasier, N. et al. A three-level model for therapeutic drug monitoring of antimicrobials at the site of infection. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00215-3 (2023). This concept work discusses the potential additional information that can be achieved through body-analysis through wearable devices beyond being a simple proxy for blood analysis.

  • Reber, E., Schönenberger, K. A., Vasiloglou, M. F. & Stanga, Z. Nutritional risk screening in cancer patients: the first step toward better clinical outcome. Front. Nutr. 8, 603936 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niederberger, C. et al. Wearable sweat analysis to determine biological age. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2023.02.001 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Brasier, N., Niederberger, C. & Salvatore, G. A. The sweat rate as a digital biomarker in clinical medicine beyond sports science. Soft Sci. 4, 6 (2024).


    Google Scholar
     

  • Brasier, N. et al. Towards on-skin analysis of sweat for managing disorders of substance abuse. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01187-6 (2024). This comment outlines the potential of sweat analysis as a clinical body fluid by combining sweat’s biophysical and biochemical health information.

  • Xu, C. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. https://doi.org/10.1038/s41928-023-01116-6 (2024). This study successfully demonstrated in a clinical study how multimodal wearable sensing using sweat and biophysical analysis can be implemented to monitor stress, thus extending actual unimodal sensors using either biophysical or biochemical analysis.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hjelmgren, H. et al. Capillary blood sampling increases the risk of preanalytical errors in pediatric hospital care: observational clinical study. J. Spec. Pediatr. Nurs. 26, e12337 (2021).

    PubMed 

    Google Scholar
     

  • Memon, S. F., Memon, M. & Bhatti, S. Wearable technology for infant health monitoring: a survey. IET Circuits Devices Syst. 14, 115–129 (2020).


    Google Scholar
     

  • Worth, C. et al. Continuous glucose monitoring for children with hypoglycaemia: evidence in 2023. Front. Endocrinol. 14, 1116864 (2023).


    Google Scholar
     

  • Mack, I. et al. Wearable technologies for pediatric patients with surgical infections—more than counting steps? Biosensors 12, 634 (2022).

  • Kruizinga, M. D. et al. Towards remote monitoring in pediatric care and clinical trials—tolerability, repeatability and reference values of candidate digital endpoints derived from physical activity, heart rate and sleep in healthy children. PLoS ONE 16, e0244877 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rwei, A. Y. et al. A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care. Proc. Natl Acad. Sci. USA 117, 31674–31684 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labrique, A. B. et al. Best practices in scaling digital health in low and middle income countries. Glob. Health 14, 103 (2018).


    Google Scholar
     

  • Chen, W. et al. Cost-effectiveness of screening for atrial fibrillation using wearable devices. JAMA Health Forum 3, e222419 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, Y. E., Kim, S. & Chang, H.-J. Artificial intelligence and echocardiography. J. Cardiovasc. Imaging 29, 193–204 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seto, E. Y. et al. Patterns of intestinal schistosomiasis among mothers and young children from Lake Albert, Uganda: water contact and social networks inferred from wearable global positioning system dataloggers. Geospat. Health 7, 1–13 (2012).

    PubMed 

    Google Scholar
     

  • Ozella, L. et al. Using wearable proximity sensors to characterize social contact patterns in a village of rural Malawi. EPJ Data Sci. 10, 46 (2021).


    Google Scholar
     

  • Evans, G. F., Shirk, A., Muturi, P. & Soliman, E. Z. Feasibility of using mobile ECG recording technology to detect atrial fibrillation in low-resource settings. Glob. Heart 12, 285–289 (2017).

    PubMed 

    Google Scholar
     

  • Hughes, C. M. L. et al. Development of a post-stroke upper limb rehabilitation wearable sensor for use in sub-Saharan Africa: a pilot validation study. Front. Bioeng. Biotechnol. 7, 322 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Skin-interfaced wireless biosensors for perinatal and paediatric health. Nat. Rev. Bioeng. 1, 631–647 (2023).


    Google Scholar
     

  • Bioengineering for low-resource settings. Nat. Rev. Bioeng. 1, 607 (2023).

  • Huhn, S. et al. Using wearable devices to generate real-world, individual-level data in rural, low-resource contexts in Burkina Faso, Africa: a case study. Front. Public Health 10, 972177 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mashamba-Thompson, T. P., Pfavayi, L. T. & Mutapi, F. Blind spots in the implementation of point-of-care diagnostics for underserved communities. Nat. Rev. Bioeng. https://doi.org/10.1038/s44222-023-00127-4 (2023).

    Article 

    Google Scholar
     

  • Hui, C. Y. et al. Mapping national information and communication technology (ICT) infrastructure to the requirements of potential digital health interventions in low- and middle-income countries. J. Glob. Health 12, 04094 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirzaei Sani, E. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).

  • Xu, Y. et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat. Biomed. Eng. 7, 1307–1320 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pu, Z. et al. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 7, eabd0199 (2021).

  • Güder, F. et al. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 55, 5727–5732 (2016).


    Google Scholar
     

  • Alshabouna, F. et al. PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery. Mater. Today 59, 56–67 (2022).

    CAS 

    Google Scholar
     

  • Bandodkar Amay, J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

  • Olenik, S., Lee, H. S. & Güder, F. The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 6, 286–288 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyein, H. Y. Y. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 5, eaaw9906 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, L. B. et al. Skin-interfaced microfluidic system with machine learning-enabled image processing of sweat biomarkers in remote settings. Adv. Mater. Technol. 7, 2200249 (2022).


    Google Scholar
     

  • Ghaffari, R. et al. Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv. Funct. Mater. 30, 1907269 (2020).

    CAS 

    Google Scholar
     

  • Song, Y., Mukasa, D., Zhang, H. & Gao, W. Self-powered wearable biosensors. Acc. Mater. Res. 2, 184–197 (2021).

    CAS 

    Google Scholar
     

  • Min, J. et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6, 630–641 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, L. et al. A self-sustainable wearable multi-modular e-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, N., Heikenfeld, J., Milla, C. & Javey, A. The challenges and promise of sweat sensing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02059-1 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).


    Google Scholar
     

  • Kamodyova, N. et al. Blood contamination in saliva: impact on the measurement of salivary oxidative stress markers. Dis. Markers 2015, 479251 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, J.-H. & Kho, H.-S. Blood contamination in salivary diagnostics: current methods and their limitations. Clin. Chem. Lab. Med. 57, 1115–1124 (2019).

  • Cruickshank-Quinn, C. et al. Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate. Respir. Res. 18, 57 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rufo, J., Zhang, P., Zhong, R., Lee, L. P. & Huang, T. J. A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat. Commun. 13, 3459 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, L., Hutchens, M., Hawkins, C. & Radnov, A. How much do clinical trials cost? Nat. Rev. Drug Discov. 16, 381–382 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y. et al. 3D-printed epifluidic electronic skin for machine learning–powered multimodal health surveillance. Sci. Adv. 9, eadi6492 (2023).

  • Yang, D. S. et al. 3D-printed epidermal sweat microfluidic systems with integrated microcuvettes for precise spectroscopic and fluorometric biochemical assays. Mater. Horiz. 10, 4992–5003 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Soto, R. J., Hall, J. R., Brown, M. D., Taylor, J. B. & Schoenfisch, M. H. In vivo chemical sensors: role of biocompatibility on performance and utility. Anal. Chem. 89, 276–299 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, C., Wang, L., Liu, S., Sheng, X. & Yin, L. Recent development of implantable chemical sensors utilizing flexible and biodegradable materials for biomedical applications. ACS Nano 18, 3969–3995 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Brasier, N. & Eckstein, J. Sweat as a source of next-generation digital biomarkers. Digit. Biomark. 3, 155–165 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, N., Fischer, A. R. H. & Frewer, L. J. Socio-psychological determinants of public acceptance of technologies: a review. Public Understand. Sci. 21, 782–795 (2011).


    Google Scholar
     

  • Stein, H. F. Rehabilitation and chronic illness in American culture. J. Psychol. Anthr. 2, 153–176 (1979).


    Google Scholar
     

  • Luborsky, M. R. Sociocultural factors shaping technology usage: fulfilling the promise. Technol. Disabil. 2, 71–78 (1993).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mushi, A. K. et al. Acceptability of malaria rapid diagnostic tests administered by village health workers in Pangani District, North eastern Tanzania. Malar. J. 15, 439 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngowi, K. et al. “I wish to continue receiving the reminder short messaging service”: a mixed methods study on the acceptability of digital adherence tools among adults living with HIV on antiretroviral treatment in Tanzania. Patient Prefer. Adherence 15, 559–568 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shehada, N. et al. Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano 10, 7047–7057 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Acciaroli, G., Vettoretti, M., Facchinetti, A. & Sparacino, G. Toward calibration-free continuous glucose monitoring sensors: Bayesian calibration approach applied to next-generation dexcom technology. Diabetes Technol. Ther. 20, 59–67 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Shan, B. et al. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. ACS Nano 14, 12125–12132 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Nakhleh, M. K. et al. Artificially intelligent nanoarray for the detection of preeclampsia under real-world clinical conditions. Adv. Mater. Technol. 1, 1600132 (2016).


    Google Scholar
     

  • Jackson, M. & Castle, J. R. Where do we stand with closed-loop systems and their challenges? Diabetes Technol. Ther. 22, 485–491 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalasin, S., Sangnuang, P. & Surareungchai, W. Lab-on-eyeglasses to monitor kidneys and strengthen vulnerable populations in pandemics: machine learning in predicting serum creatinine using tear creatinine. Anal. Chem. 93, 10661–10671 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 28, 2207–2215 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashir, A. et al. Machine learning guided aptamer refinement and discovery. Nat. Commun. 12, 2366 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sotirakis, C. et al. Identification of motor progression in Parkinson’s disease using wearable sensors and machine learning. npj Parkinsons Dis. 9, 142 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porumb, M., Stranges, S., Pescapè, A. & Pecchia, L. Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Sci. Rep. 10, 170 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunn, J. et al. Wearable sensors enable personalized predictions of clinical laboratory measurements. Nat. Med. 27, 1105–1112 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cammarota, G. et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 635–648 (2020).

    PubMed 

    Google Scholar
     




  • Greek Live Channels Όλα τα Ελληνικά κανάλια:
    Βρίσκεστε μακριά από το σπίτι ή δεν έχετε πρόσβαση σε τηλεόραση;
    Το IPTV σας επιτρέπει να παρακολουθείτε όλα τα Ελληνικά κανάλια και άλλο περιεχόμενο από οποιαδήποτε συσκευή συνδεδεμένη στο διαδίκτυο.
    Αν θες πρόσβαση σε όλα τα Ελληνικά κανάλια Πατήστε Εδώ


    Ακολουθήστε το TechFreak.gr στο Google News

    Ακολουθήστε το TechFreak.GR στο Google News για να μάθετε πρώτοι όλες τις ειδήσεις τεχνολογίας.


    Dimitris Marizas
    Dimitris Marizashttps://techfreak.gr
    Παθιασμένος με τις νέες τεχνολογίες, με έφεση στην καινοτομία και τη δημιουργικότητα. Διαρκώς αναζητώ τρόπους αξιοποίησης της τεχνολογίας για την επίλυση προβλημάτων και τη βελτίωση της καθημερινής ζωής.
    Διάφορα από την ίδια κατηγορία

    ΑΦΗΣΤΕ ΜΙΑ ΑΠΑΝΤΗΣΗ

    εισάγετε το σχόλιό σας!
    παρακαλώ εισάγετε το όνομά σας εδώ

    Δημοφιλείς Άρθρα

    Τελευταία Νέα