back to top
Πέμπτη, 28 Νοεμβρίου, 2024
ΑρχικήNewsHealthOrgan-specific Sympathetic Innervation and Visceral Functions

Organ-specific Sympathetic Innervation and Visceral Functions


  • Langley, J. N. The Autonomic Nervous System (Pt. I) (Heffer, 1921).

  • Wachsmuth, H. R., Weninger, S. N. & Duca, F. A. Role of the gut–brain axis in energy and glucose metabolism. Exp. Mol. Med. 54, 377–392 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veerakumar, A., Yung, A. R., Liu, Y. & Krasnow, M. A. Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature 606, 739–746 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovelace, J. W. et al. Vagal sensory neurons mediate the Bezold–Jarisch reflex and induce syncope. Nature 623, 387–396 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, R. & Xu, X. Z. S. Temperature sensation: from molecular thermosensors to neural circuits and coding principles. Annu. Rev. Physiol. 83, 205–230 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mota, C. M. D. & Madden, C. J. Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands. Nat. Rev. Neurosci. 25, 143–158 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, R. B., Strochlic, D. E., Williams, E. K., Umans, B. D. & Liberles, S. D. Vagal sensory neuron subtypes that differentially control breathing. Cell 161, 622–633 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. Long-term imaging of dorsal root ganglia in awake behaving mice. Nat. Commun. 10, 3087 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein, N. et al. Hypothalamic detection of macronutrients via multiple gut–brain pathways. Cell Metab. 33, 676–687.e5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichiki, T. et al. Sensory representation and detection mechanisms of gut osmolality change. Nature 602, 468–474 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolfson, R. L. et al. DRG afferents that mediate physiologic and pathologic mechanosensation from the distal colon. Cell 186, 3368–3385.e18 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayrer, J. R. et al. Gut enterochromaffin cells drive visceral pain and anxiety. Nature 616, 137–142 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langley, J. N. Sketch of the progress of discovery in the eighteenth century as regards the autonomic nervous system. J. Physiol. 50, 225–258 (1916).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldstein, D. S. Differential responses of components of the autonomic nervous system. Handb. Clin. Neurol. 117, 13–22 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, E. E., Scott-Solomon, E. & Kuruvilla, R. Peripheral innervation in the regulation of glucose homeostasis. Trends Neurosci. 44, 189–202 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, K., Nakamura, Y. & Kataoka, N. A hypothalamomedullary network for physiological responses to environmental stresses. Nat. Rev. Neurosci. 23, 35–52 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, J. et al. Highly selective brain-to-gut communication via genetically defined vagus neurons. Neuron 109, 2106–2115.e4 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharkey, K. A., Williams, R. G. & Dockray, G. J. Sensory substance P innervation of the stomach and pancreas. Demonstration of capsaicin-sensitive sensory neurons in the rat by combined immunohistochemistry and retrograde tracing. Gastroenterology 87, 914–921 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trudrung, P., Furness, J. B., Pompolo, S. & Messenger, J. P. Locations and chemistries of sympathetic nerve cells that project to the gastrointestinal tract and spleen. Arch. Histol. Cytol. 57, 139–150 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinson, N., Robbins, H. L., Clark, M. J. & Furness, J. B. Locations and innervation of cell bodies of sympathetic neurons projecting to the gastrointestinal tract in the rat. Arch. Histol. Cytol. 64, 281–294 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torres, H. et al. Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 321, R328–R337 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, K. L., Poller, W. C., Swirski, F. K. & Russo, S. J. Central regulation of stress-evoked peripheral immune responses. Nat. Rev. Neurosci. 24, 591–604 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott-Solomon, E., Boehm, E. & Kuruvilla, R. The sympathetic nervous system in development and disease. Nat. Rev. Neurosci. 22, 685–702 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuntz, A. & Jacobs, M. W. Components of periarterial extensions of celiac and mesenteric plexuses. Anat. Rec. 123, 509–520 (1955).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gut–brain circuit. Nature 583, 441–446 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furlan, A. et al. Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nat. Neurosci. 19, 1331–1340 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mapps, A. A. et al. Diversity of satellite glia in sympathetic and sensory ganglia. Cell Rep. 38, 110328 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumari, R. et al. Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice. Cell Rep. 43, 113674 (2024).

  • Lindh, B. et al. Topography of NPY-, somatostatin-, and VIP-immunoreactive, neuronal subpopulations in the guinea pig celiac-superior mesenteric ganglion and their projection to the pylorus. J. Neurosci. 6, 2371–2383 (1986).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindh, B., Hökfelt, T. & Elfvin, L. G. Distribution and origin of peptide-containing nerve fibers in the celiac superior mesenteric ganglion of the guinea-pig. Neuroscience 26, 1037–1071 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miolan, J. P. & Niel, J. P. The mammalian sympathetic prevertebral ganglia: integrative properties and role in the nervous control of digestive tract motility. J. Auton. Nerv. Syst. 58, 125–138 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaestner, C. L., Smith, E. H., Peirce, S. G. & Hoover, D. B. Immunohistochemical analysis of the mouse celiac ganglion: an integrative relay station of the peripheral nervous system. J. Comp. Neurol. 527, 2742–2760 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, C., Zhang, T., Liu, C., Gu, S. & Chen, Y. Generation of Shox2-Cre allele for tissue specific manipulation of genes in the developing heart, palate, and limb. Genesis 51, 515–522 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hama, H. et al. ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 1518–1529 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Browning, K. N. & Travagli, R. A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4, 1339–1368 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckh, K. & Arnold, R. Regulation of bile secretion by sympathetic nerves in perfused rat liver. Am. J. Physiol. 261, G775–G780 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Ali, A. E., Rutishauser, S. C. & Case, R. M. Pancreatic and biliary secretion in the anesthetized Syrian golden hamster in response to secretin, cholecystokinin-octapeptide, bombesin, and carbachol. Pancreas 5, 314–322 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marliss, E. B. et al. Glucagon release induced by pancreatic nerve stimulation in the dog. J. Clin. Invest. 52, 1246–1259 (1973).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahrén, B., Veith, R. C. & Taborsky, G. J. Sympathetic nerve stimulation versus pancreatic norepinephrine infusion in the dog: 1). Effects on basal release of insulin and glucagon. Endocrinology 121, 323–331 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • Rao, M. & Gershon, M. D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517–528 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Servin-Vences, M. R. et al. PIEZO2 in somatosensory neurons controls gastrointestinal transit. Cell 186, 3386–3399.e15 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cannon, W. B. The Wisdom of the Body 2nd edn (Norton & Co., 1939).

  • Seals, D. R. & Victor, R. G. Regulation of muscle sympathetic nerve activity during exercise in humans. Exerc. Sport Sci. Rev. 19, 313–349 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jänig, W. & McLachlan, E. M. Characteristics of function-specific pathways in the sympathetic nervous system. Trends Neurosci. 15, 475–481 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Morrison, S. F. Differential control of sympathetic outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R683–R698 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonsalvez, D. G., Kerman, I. A., McAllen, R. M. & Anderson, C. R. Chemical coding for cardiovascular sympathetic preganglionic neurons in rats. J. Neurosci. 30, 11781–11791 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M., Wang, Q. & Whim, M. D. Fasting induces a form of autonomic synaptic plasticity that prevents hypoglycemia. Proc. Natl Acad. Sci. USA 113, E3029–E3038 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pool, A.-H. et al. The cellular basis of distinct thirst modalities. Nature 588, 112–117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J. and Dalca, A. V. VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38, 1788–1800 (2019).

  • Dalca, A. V., Rakic, M., Guttag, J. & Sabuncu, M. in Advances in Neural Information Processing Systems Vol. 32 (Curran Associates, Inc., 2019).

  • Carrier, G. O. & Ikeda, S. R. TTX-sensitive Na+ channels and Ca2+ channels of the L- and N-type underlie the inward current in acutely dispersed coeliac-mesenteric ganglia neurons of adult rats. Pflugers Arch. 421, 7–16 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pool, A.-H., Poldsam, H., Chen, S., Thomson, M. & Oka, Y. Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references. Nat. Methods 20, 1506–1515 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. & Oka, Y. Celiac-superior mesenteric ganglia (CG-SMG) innervation. Zenodo https://doi.org/10.5281/zenodo.13306861 (2024).

  • Tongtong, W. & Oka, Y. Celiac-superior mesenteric ganglia (CG-SMG) spatial transcriptomics. Zenodo https://doi.org/10.5281/zenodo.13883320 (2024).



  • Dimitris Marizas
    Dimitris Marizashttps://techfreak.gr
    Παθιασμένος με τις νέες τεχνολογίες, με έφεση στην καινοτομία και τη δημιουργικότητα. Διαρκώς αναζητώ τρόπους αξιοποίησης της τεχνολογίας για την επίλυση προβλημάτων και τη βελτίωση της καθημερινής ζωής.
    Διάφορα από την ίδια κατηγορία

    ΑΦΗΣΤΕ ΜΙΑ ΑΠΑΝΤΗΣΗ

    εισάγετε το σχόλιό σας!
    παρακαλώ εισάγετε το όνομά σας εδώ

    Δημοφιλείς Άρθρα

    Τελευταία Νέα